Bounding the Resource Availability of
Partially Ordered Events with Constant Resource
Impact :

Jeremy Frank

Computational Sciences Division
NASA Ames Research Center, MS 269-3
frank @email.arc.nasa.gov
Moffett Field, CA 94035

Abstract. We compare existing techniques to bound the resource availability of
partially ordered events. We first show that, contrary to intuition, two existing
techniques, one due to Laborie and one due to Muscettola, are not strictly compa-
rable in terms of the size of the search trees generated under chronological search
with a fixed heuristic. We describe a generalization of these techniques called the
Flow Balance Constraint to tightly bound the amount of available resource for a
set of partially ordered events with piecewise constant resource impact. We prove
that the new technique generates smaller proof trees under chronological search
with a fixed heuristic, at little increase in computational expense. We then show
how to construct tighter resource bounds but at increased computational cost.

1 Introduction

Scheduling is about simultaneously satisfying temporal constraints and resource avail-
ability constraints. Following Muscettola [1], Laborie [2] has provided a simple but
expressive formalism for such problems called Resource Temporal Networks (RTNs)
that we will study in this paper. Briefly, RTNs consist of a Simple Temporal Network
(8TN) as described in [3], constant resource impacts (either production or consumption)

for cvents, and piccewise constant resource bounds. Usually, scheduling is performed
* assuming that the problem’s characteristics are known in advance, do not change, and
that the execution of the schedule is deterministic. Often, these assumptions are violated
in practice. For example, if events do not take place exactly when they are scheduled, it
may be costly to find a new schedule. Maintaining remporal flexibiliry during scheduling
(as was done in kn:AIPS) permits the construction of a schedule without determining
exactly when events take place until execution. Building schedules by ordering events
rather than assigning event times preserves temporal flexibility. Techniques such as that
described in [S] make it possible to efficiently update the flexible schedule once the
precise timing of events are known.

A simple resource use model assumes all resources impacts occur instantly; this is
known as the piecewise constant resource impact model. Under this assumption, it is
straightforward to calculate the resource utilization over time of events whose execution
time are fixed. The task becomes more difficult when activities or events are not fixed
in time, and more difficult still when events can have arbitrary impact on resources.

An important use of these techniques is to provide a means for halting the scheduling
process, either by determining that the resource constraint is satisfied or proving that it
can’t be satisfied, implying that some scheduling decisions need to be changed. In the
context of constructive search, early detection of success or failure is often important to
achieving good search performance. While resource bounds are also important inputs
to heuristics to drive search in this paper we focus on the ability of resource bounding
techniques to reduce the cost of constructive search algorithms by means of detecting
success or failure.

Two existing techniques address the bounding of resource availability for activities
or events with a constant resource impact, the Balance Constraint (BC) [6] due to
Laborie, and the Resource Envelope (£;) [1] due to Muscettola. These techniques are
described in more detail in Section 2. The techniques are somewhat different, with
BC featuring an efficient (but loosely) bounding approximation, while E; is somewhat
more costly but provides a tight bound (in all cases a schedule justifying the bound is
proved to exist). Somewhat surprisingly, these techniques are not strictly comparable in
terms of the size of the search trees generated under chronological search. We provide
examples demonstrating this in Section 3. In Section 4 we describe a generalization of
these techniques to tightly bound the amount of available resource for a set of partially
ordered events called the Flow Balance Constraint (FBC). FBC is a synthesis of
the approaches described in [6, 1]. We prove that F BC' generates smaller proof trees
under chronological search. In Section 7 we exploit the results of [7] to calculate F BC
incrementally, thereby reducing its computational cost. In Section 8 we then generalize
FBC in order to construct even tighter resource bounds but at increased computational
cost. Finally, in Section 9 we conclude and describe future work.

2 Previous Work

In this paper we will assume that time is represented using integers!. We will also
assume that the resource impact of each event is known when solving begins. We will
assume each RTN has only one resource, that there is one lower-than constraint and
one greater-than constraint on the resource, and that the greater-than constraint imposes
a minimum resource availability of 0. We also assume that the lower bound of the
scheduling horizon is 0, and that the resource has its maximum availability at time 0.
The results that foliow do not depend on these assumptions.

The techniques we study are aimed at checking the Necessary Truth Criterion [2,
8] (NTC), namely, whether there exists a feasible solution of the STN that also satisfies
the resource constraints. As with all constraints, for a given RTN the NTC can be ei-
ther proved satisfied, proved unsatisfiable, or neither. The NTC is proved satisfied if the
maximum calculated availability of the resource is always an upper bound on the actual
maximum available resource and is below the upper limit, and the minimum calculated
availability of the resource is always a lower bound on the actual minimum available
resource and is above 0. The NTC is proved unsatisfied if the maximum calculated
availability of the resource is always an upper bound on the actual maximum available
resource and is below 0, and the minimum calculated availability of the resource is al-
ways alower bound on the actual minimum available resource and is above the resource
upper bound. Otherwise, the satisfiability state of the NTC is undetermined.

We will use the following notation: Let AV be the set of all events of an RTN and
n = [N]. Let X € N; ¢(X) denotes the resource impact of X. If ¢(X) < 0 X is said
to be a consumer ; if ¢(X) > 0 then X is said to be a producer. As defined in (1], X
anti-precedes Y if X must occurs at or after Y (i.e. Y < X). A predecessor set of X
is a set S(X) such that if X € S then every event Y such that ¥ < X is also in 5.
A successor ser of X is a set T(X) such that if X € S then every event Y such that
Y > Xisalsoin S. Let R be an RTN and let A(R) be any procedure for evaluating

! This assumption can be relaxed. but leads to resource bounds holding over half-open intervals
of time.

the NTC. If A(R) = T then the NTC is provably satisfied. If A(R) = F, the NTC
is provably unsatisfied. If A(R) =7 the NTC is neither provably satisfied nor provably

unsatisfied.

2.1 The Balance Constraint

Laborie’s Balance Constraint (BC) [6] calculates bounds on the maximum and mini-
mum amount of a resource immediately prior to and immediately following the execu-
tion of an event X. The STN is partitioned relative to X into the following sets: Before
B(X), Before or Equal BS(X), Equal S(X), Equal or After AS(X), After A(X),
and Unordered U(X). These sets are then used to calculate bounds on the following
quantities: L. (X) for the minimum available resource before X happens, L5, (X)
for the maximum available resource before X happens, L, (X), for the minimum
available resource after X has happened, and L, ., (X} for the maximum available re-
source after X has happened. A sample calculation: let P, (X) = (B(X) U (V €
BS(X)UU(X)|e(V) > 0) Then an upper bound on L5, (X) = >z p<. (xy¢(Z).
The other bounds can be constructed in a similar manner. The bounds are loose in that
no schedule consistent with the existing constraints may achieve the bound. The com-
putational complexity of BC is dominated by the maintenance of arc-consistency of

the STN.

2.2 The Resource Envelope

The Envelope Algorithm E; [1] takes a different approach to bounding resource avail-
ability. The approach is to find schedules permitted by the STN that maximize or mini-
mize the available resource at a given time ¢. The envelope of an RTN is the pair of func-
tions from time to the maximum (Lynqz(t)) and minimom (L., (t)) available resource
defined by the current STN. Events are partitioned into those that are Closed C(t),
Pending P(t), or Open O(t). The maximum available resource at a time t, Lmqz(t).
is supported by a schedule ensuring that the events in (P (t) C P(t)) U C(¢) all
occur before t. To find the set AP, (t] C P(t) that contributes to Py, (t). a maxi-
mum flow problem is constructed using all anti-precedence links derived from the arc-
consistent STN. The rules for building the flow problem to find L4, (t) are as follows:
all events in P(t) are represented by nodes of the flow problem. If X anti-precedes ¥
then the flow problem contains an arc X — Y with infinite capacity. If ¢(X) > 0
then the problem contains an arc ¢ — X with capacity ¢(X). If ¢(X) < 0 then
the problem contains an arc Y — 7 with capacity |¢(X}|. The flow problem to find
Lnin{t) is constructed in a similar manner. Examples of the flow probiem construction
are shown in Figure 1. The maximum flow of this flow network matches ail possi-
ble production with all possible consumption in a manner consistent with the prece-
dence constraints. The predecessor set of those events reachable in the residual flow
is APpaz(t). Define APS . (t) = P(t) — APpa.(t). The tightness of the bound is
guaranteed by proving that adding the constraints {X,p < t}VX € APpa.(t) and
{Yy > t}VY € APS, (t) UO(t) is consistent with the original STN.

It tarns out that AP, (t) need only be computed at < 2n distinct times, which we
refer to as Instants. The set of these times 1 = {VX X}, U Xyp} is the set of all lower
and upper bounds of events. Obviously the set of events that could define L2 (t) does
not change between consecutive instants. We will usually refer to the unique instants.
We will also refer to e(i) = {1] X}, = ¢ U Y |[Yup = 1}, those events that define ¢ in 1.
The complexity of the algorithm described in [1] is O(n = MazFlow(n, m)). where
n = A’} and m is the number of anti-precedence relationships in the arc-consistent
STN. In [7] this is reduced to O(MazFlow(n, m)) by taking advantage of the order
in which edges are added to and removed from a single maximum flow problem. The

(a) Resource Temporal Network

i3

44

<[2, 11]¢1> <[2,11},-1> <3, 12} +1>
&{111 W{oq-&m —v
<[1,10}-1> <2,11]41> <f2,11]-1> <3,12)+1>

(c) Flow to find DPmax(12) Nodes B and X becomne
closed at 12.

fh) Flow 1a find 0P (111, Only nodes A
e

and W are not pending at 11.

Fig. 1. The Flow(s) for F:.

crucial observation is that when computing E; an event always move from open to
pending to closed and stays closed. As shown in Figure 1, this guarantees that arcs and
vertices of the flow problem are removed from the sink 7 and added to the source o of
the flow problem. The insight is that the flow problem need not be solved anew, but the
previous flow can be reused, thereby saving a factor of n. As an aside, a more general
incremental maximum flow algorithm is given in [9], but it doesn’t take advantage of
the order of flow arc additions and deletions, and is not as efficient at calculating the
envelope.

3 Examples of Non-Domination

Muscettola previously demonstrated that E; can prove the NTC is satisfied in cases
where BC cannot. In this section we provide an example where £ fails to prove the
NTC is violated in cases where BC can. The somewhat surprising consequence of this
is that neither algorithm “dominates™ the other when used solely to halt search.

3.1 BC Doesn’t Dominate F,

Muscettola {1] describes an RTN for which BC does not prove the NTC is satisfied.
This example is modified and reproduced in Figure 2. Initially the resource has 2 units
available. BC will reason as follows: U(A) = {W, X,Y,Z} and A(4) = {B,C, D}.
Then L2, (A) = —1; it schedules W and Y before A, and schedules X and Z after
A. Clearly, this schedule is not consistent with the original STN, so the bound calcu-
lated by BC is "loose”. Thus, BC incorrectly believes that more decisions are needed.
The E, algorithm is able to prove that the NTC is satisfied in this case by determin-
ing Lomin(t) > 0 over the scheduling horizon. As a case in point, consider Loin(11).
The pending set P(11) = {B,C, D, X.Y, Z}. We see that it is possible to postpone B
and X and achieve L, (11) = 0. It is also possible to schedule C and Y, the other
consumers; however, scheduling C, for example, forces the scheduling of the producer
B prior to C because of temporal constraints. This accounts for one of the consump-
tions, and makes it impossible to improve upon Ly, (11) = 0. If we consider the
flow problem in Figure 1 (b), we see that this is exactly what is calculated. In addition,
Lynin(t) < 2 over the horizon, showing that the NTC is provably satisfied.

(a) Resource Temporal Network

[1,1] ou&n 1]—,

<[1.10},-1> <2, 11] +1> <[2,11],-1> <[3,12],+1>

@‘[1 1]@[04» &[1 1]—@

<[1,10]-1> <2.11]+1> <2,11]-1> <[3,12],+1>

2 : ' 2
1 i 1
1 [l <
! : W,AY,C)
P Leig® bmin_{
0 min 0 == _“BXD2)
b 1 2 11 12
-1 -1 ‘1—\<me {B,X,D,Z)
in >(WA Y,C)

{b) Envelope and Balance Constraint lower bounds
Fig.2. An RTN for which BC fails to detect that the problem is solved.

3.2 FE; Doesn’t Dominate BC

Figure 3 describes an RTN for which E; cannot show that the NTC is provably not
satisfied. Again, initially the resource has 2 units available. In this case, the BC will
find L5, (A) = L5, (B) = L5,,(C) = 1,but LS, (D) = -5, since B(D) =
{A, B,C}. This proves that, no matter what additional constraints are imposed, the
NTC will be violated. By contrast, E; cannot conclude that the NTC is violated. We see
that B and C can be postponed until time 10, and A can be scheduled early, leading to
Linaz (1) = 3. At time 2, we could schedule D, but that would require scheduling ev-
erything before 2 with a resource availability of 0 being the result; at time 2 we can still
find a schedule in which 4 and nothing else 50 L, (2) = 3. At time 10, however, bath
consumption events must have taken place; in order to achieve the maximum resource
available we can schedule D, leading to L,,4-(11) = 0. The calculation of L,,;,(t)
(not shown) provides no assistance in proving the NTC is violated. Not only does E;
fail to show that the NTC is provably violated, there are non-trivial ordering decisions
that can be made; in the worst case, schedulers could spend a considerable amount of
time continuing the search from states like the one shown in Figure 3.

4 A Tighter Balance Constraint

4.1 Setup

In order to achieve tighter bounds than either £; or BC, we adopt a synthesis of
both strategies. We use the following partition of the STN relative to X: C(X) is
the set of events that must have been scheduled before X, O(X) is the set of events
that must be scheduled after X, E(X) is the set of events that must occur at the
same time as X. and P(X)) is the remainder of the events. Like Laborie, we then find
Liar(X), L5 (X), L7, (X)), and ;. (X). Like Muscettola, we build a maximum
flow problem whose re51dual graph is used to construct the supporting sets P, (X),
P2 {X). P,.(X). and P, (X). The rules for constructing the flow problem are
identical to those described previously; only the set of events considered in the flow
problem is different. The resulting set P> (X defines an STN constructed by adding

tmax® .
<[1,10],+1> 3] ; 3 e A
Ve e
2 1 : 1
2,11],45 :
[1,1] @ 11].+5> 0 0 @e——|__ (D)
7 01 2 10 11 max,_
(1.1] Y T @l (BO)
<{1,10},-4>11.1] 3 -3
4 -4
Lreri i 5 <
<{1,10],-4> 2 i Lmax)

(b) Envelope and Balance

(a) Resource Temporal Network Constraint upper bounds

Fig.3. An RTN for which E fails to detect that the problem is unsolvable.

the following constraints: ¥V € PS, (X){V < X} and VV € PSS (X){X <V}
Note that we also need find APS, . (X) C P(X) and so P, (X) C P(X)UC(X).
The other set containment properties similar. We refer to the resulting bounds as the
Flow Balance Constraint (F BC), since it combines the features of the enve]ope with
the flow-based approach to guarantee tightness.

One might think from this analysis that the number of flow problems to solve is 4n,
i.e. one flow problem for each of LS. (X). Lo . (X), L5, .(X), L7,,.(X). Some-
what surprisingly, this is not necessary; only 2n flow calculations are needed. Consider
P(X). By definition, X has no anti-precedence arcs to any event in P(X); in the lan-
guage of [1] it is flow-isolated. X doesn’t contribute to L. (X), L, ,.(X) and does
contribute to L, (X), L7 .. (X); once the flow problems are sotved, we simply add
E(X)’s resource impact. The sets we find from solving the flows are thus referred to as

APS.__(X)and APt (X)

mazr man

FBC(R)
Make the STN S arc-consistent.
Infer all anti-precedence and precedence links. (transitive closure)
Collect all sets P(X), C(X).
for each event X)
Build flow problems for upper and lower bounds from P(X)
Bound(X)
end for
end

Bound(X)
Find APS,.(X) C P(X)
LE" (X) =2 vears,.couomue) o
Lmar(X) = ZVEAP;W:(X)UC(X) C(V)
Find AP, (X) C P(X)
Lrm(X) = Z\feAP;;m(X)UC(X)UE(X) (V)
Lin(X)= Z\v'EAP,i;n(X)UC(X) c(V)

end

V)

Fig. 4. A sketch of the Flow Balance Constraint.

The algorithm for F'BC is described in Figure 4. Since we must derive the transitive
closures of the anti-precedence and strict precedence constraints, we can collect the sets
P(X),E(X),C(X) in time proportional to m the number of induced anti-precedences
in the graph. Because we find AP (X) and APE,, (X) and using maximum flow,
this is arguably the most expensive part of the algorithm; in the next section we discuss
complexity in more detail.

We now proceed to prove that the resulting bounds on quantities like Ly, (E) are
tight. To do so, we first show that there is at least one schedule justifying the bound,
and then show that there i$ no better bound than that found using the flow problem.

Theorem 1. Let R be an RTN and X be an event in R. Suppose APE . (X) # 0.
Let R’ be the STN formed by adding the following constraints to R: {V < X} for all
X € APg (X)and {X > V}forall X € APS,,.(X). Then R has at least one
temporally consistent solurion.

Proof. Since V € P(X) the imposition of a single constraint alone doesn’t make the
STN inconsistent. Imposing a constraint V < X only decreases V,,; and increases
Xip- Since APy, (X) is a predecessor set, all {V < X} can be imposed simulta-
neously without impacting consistency. Imposing a constraint X < V only decreases
Xup and increases V,. Since APS, . (X) is a successor set, all {X > V} can also
be imposed simultaneously without impacting consistency. Finally, X is the only event
whose bounds are acted on by both classes of constraint. Consider two events A,B.
Since A € APE,,.(X) and B € APS,,(X) we know it can’t be the case that B < A.
But then either A < B or 4 and B can be ordered in any way, and we already know X
can be ordered any way with respect to 4 or B. Thus, A < X < B is possibie and no
such ordering prevents other linearizations with respect to X. O

Theorem 2. Let R be an RTN and X be an event in R. Suppose AP, maI (X)#£0
Then Y e ape (X)UC(X)UE(X) c(V') is the maximum possible value of L., . (X). If

maz

2 xepx) &(X) < Othen 3y Ape xyuex) (V) is the maximum possible value

maz

Sor Ly, . (X), otherwise L7, (X) is the maximum possible value for Ly, (X).

Proof. Since we construct the flow problems in exactly the same way as is done in [1],
we state this as a corollary of Theorem 1 of {1]. O

The proofs for the tightness of the bounds on L7, (X). Ly (X)and L. . (X),
are similar.

4.2 Relating the Envelopes

In this section, we formally establish the relationship between the intervals over which
the F BC and E; bounds hold.

Since the envelope is the resource bound as a function of time, we should be able to
determine the interval of time over which the event based bounds hold; then the max-
imum (minimum) envelope at ¢ is the upper (lower) bound of all of the event based
bounds that hold at . Intuitively, LY, . (X) is the maximum availability of the resource
for an interval of time immediately prior to the time X happens. What is the interval
of time over which this value holds? Suppose we find a set PSS, (X) that supports

L%, . (X). Then as previously stated, this bound assumes that we impose the follow-
ing constraints: ¥V € PS5, (X){V < X} and VV € PSC (X)X < V}to get
a new RTN R'. Note that the new pending set P'(X) = 0 and the new closed set

C'(X) = Pg,.(X). Note also that LS __(X) is the resource availability no earlier

than V%, = maxyecr(xy Vupr. Due to the new constraints X may have a new up-

per bound ub/ which defines the latest time that L, (X) holds. Finally, note that
Ly, 0o (X) = Linaz (t) over the interval {V3,, Xyp .

We now can demonstrate the precise relationship between Ly, (t) and LS, { X).

Theorem 3. Ly, (X) < Loz (t) for Vi, <t < Xypr.

Proof. Since we add new constraints, YLz () < Limaez(t). Since LS, (X) =
Loz (t) we're done. O

Now suppose we find a set P (X) that supports L7, .. (X). Then as previously
stated, this bound assumes that we impose the following constraints: YV € P (X){V <
XYandVV € P2C (X){X < V} to get a new RTN R'. Note that the new pending
set P/(X) = 0 and the new closed set O'(X) = P, (X). Note also that L, (X)
is the resource availability no later than Wy}, = minwec/(x; Wipr. Due to the new
constraints X may have a new lower bound Xy, which defines the latest time that
L2,,.(X) holds. Finally, note that L7, . (X) = Lmaq(t) over the interval { Xy, W, .
An example is shown in Figure 5.

Theorem 4. L, (X) < Lmax(t) for Xpp <t < W,

Proof. Identical to the previous proof. O

(a) Resource Temporal Netwark decomposed relative to event X.

(b) The new Resource Temporal Network. The bound v* is the latest time of any

. > B >
event in P (A) holds over the interval [V ub® Xub.].

>
max (X) Lmax

Fig. 5. Deriving the time intervals over which resource availability bounds hold.

We show an example of the relationship in Figure 6. The RTN is the same as that
in Figure 3. This example also shows why BC can answer positively in cases where
E} cannot. In this case, BC finds a tight bound on L5, (D) that proves that the NTC
cannot be satisfied. Unfortunately, F, must calculate the maximum over all of the event-
based bounds that hold at a time ¢, and cannot do better than return 7 for this RTN.

5 Dominance

In this section we will describe our dominance criteria and show that F BC dominates
E, and BC; we do not formally show that BC and E; do not dominate each other, re-
lying on the intuition of Section 3 to adequately demonstrate this. As previously stated,
we assume that FBC. E; and BC are primarily used to detect whether a scheduling
algorithm can halt or must continue. In order to motivate our definition of dominance,

<[1,10),+1>[1’1]
0 —5F/

4o [11]
L0421 o 147455

il

<{1,10],-4>

(a) Resource Temporal Network (b) Intervals over which event bounds
hoid; the Envelope is the maximum

over all bounds that hold at any time t.

Fig. 6. An RTN for which E; fails to detect that the problem is unsolvable.

suppose that some resource bounding procedure A is used in a chronological search
framework with a fixed varizhle and valne orderino heuristic. Then we would like 4

Jgcidind
=

to domiante B if A leads to smaller search trees than using B. Now suppose A and B
are used 1n a stochastic sampling approach where we sample RTNs that are temporally
consistent with the original problem. Then we would like A to domiante B if A leads
to less sampling than B. We use the following definition of dominance.

Definition 1. Ler R be an RTN. Let T(R) be the set of all temporally consistent RTNs
that can be formed from R by adding temporal constraints to R. Let A/B : R —
{T,F,?} Let U4(R) = S € T(R)|A(S) =7. Then A dominates B on Rif Us(R)) C
Ig{R)). 4 dominates B if AR such that A dominates B on R and there exists no S
such that B dominates A on S. We write A <r B or A < B as appropriate.

Theorem 5. FBC < BC.

Proof. Theorems 1 and 2 show that the flow construction guarantees the tightest possi-
ble bounds on LS, (X)L, (X),Ls..(X)and L . (X) for any RTN. Thus there

mazx min
can be no S such that BC <g FBC. The example shown in Figure 2 shows at least

B ™

one RTN R for which F BC < g BC. This completes the proof. T
R 1%

Define E<(t) = XL, .. (X)holdsatt and E~ (t) = X|L;,,.(X) holds at £.

L
Theorem 6. I, (t) = max(maxyxep<) Lo (X), maxyep> ey L (X)) and
Lmin(t) = min(minxe p< () Ly (X): minx e £> t) Liin (X))-
Proof. Corollary of Theorems 3 and 4 O

Theorem 7. FBC < E;

Proof. Theorem 6 shows that there is no RTN § for which E; <g FBC. The example
in Figure 3 shows that there is at least one RTN R for which FBC —<p E,. This

completes the proof.

6 Complexity

A naive algorithm for calculating F BC builds a new flow network for each event
X € N. An equally naive analysis of the complexity of this algorithm is O(n *

<

Mazlow(n. m)), where 1 is the numnber of anti-precedence relationships in the RTN.

10

However, this is unsatisfactory for a number of reasons. Consider the RTN in Figure
2. The fiow networks required to calculate F'BC are identical for A, B, C, D because
P(A) = P(B) = P(C) = P(D) . Additionally, the flow networks include only a small
raction of the n nodes in the RTN; strict precedences and equalities among events will
generally reduce the size of P(X), leading to smaller flow problems. These observa-
tions suggest it should be possible to analyze the structure of the anti-precedence graph
and reduce the number of flow problems to solve, with a resulting tighter bound on the
complexity of calculating F BC.

In this section we provide a lower bound on the complexity of the naive approach
to calculating F BC. We do so by constructing an RTN such that the flow problem to
solve for each event is both non-trivial and distinct. The RTN is a ”square” graph with
/n events per side. We index events by row and column in the square. The RTN has
the following strict precedences: (i,7) < (¢ + 1,), and (4, 7) < (i, j + 1) (obviously
omitting those links for which the indices are outside the bounds [O, V. By construc-
tion, P((i,5)) = {z,y)ilz <inyg > j)U{u,v)lu <iAwv > j). Thus, ail of the flow
graphs are distinct. Every such set has a non-trivial part of the flow graph. Notice that
we can assign ¢(X) arbitrarily to the events of the RTN, as long as they are all non-zero
and there is a mix of consumers and producers. This RTN is shown in Figure 7.

(a) Worst-case RTN.

(c) The pending set for node (2,4).

Fig. 7. A perverse RTN providing 2 worst-case lower bound for calculating FBC.

We now proceed to construct a lower bound on the complexity of the naive approach
for calculating F BC on this RTN. By construction we have guaranteed that no “quick
fixes” can be used to decrease the complexity. The larger of the two induced flow prob-
lem for event (i, 5) contains max((i — 1)(v/n ~ 7 — 1), (7 — 1)(y/n — i — 1)) events,
and at least this many flow arcs (we could do an exact count but it isn’t necessary since
we're providing a lower bound.) Let us now assume we are using a FIFO preflow-push
algorithm to solve each flow problem [10]; this ignores any efficiency gained from an-
alyzing the pushable flow, but is also suitable for our purposes. If v is the number of
nodes in the flow problem, there are at least v edges, and so the complexity is (x>
Using these assumptions the total complexity of solving all the flow problems is

VA VA
SN max((i - D(Va -~ 1).(5 ~ D{vn—i— 1))

j=1i=1

First, we simplify the sum to get a lower bound:

V-1 /n-1 .
<03 VA - 5))*P
j=0 i=0

We next approximate the sum with the integral (which, while bounding above, is
close enough for our purposes):

/\/ﬁ-l
3=0

The first integral with respect to ¢ is trivial. Substituting for \/n — i, we see that
-1 - 0.5 [ie/m .
f‘__{g (Vn —i)di = (vVn - i)?3 (%) so ultimately we get

- (M) (4 -)

Collecting the high order positive powers of /1 we see that the naive algorithm has
a lower bound £2(n3-%). Thus, for preflow-push flow algorithms using FIFO queues, the

naive algorithm for F BC is £2(n * MazFlow(n,m)).

Va1)
/ (i(/m —j)>2'°di> 4

=0

7 Incrementally Calculating FBC

As stated previously, the incremental technique described in [7] shaves a factor of n off
the cost of calculating £;. This provides some hope that we can find a way 10 eliminaie
the factor of n “extra” cost for calculating F BC. A naive approach to employing the
results in [7] for calculating F BC is inadequate to eliminate a factor of n from the
complexity. The crucial element of the complexity analysis in [7] requires that an event
always move from open to pending to closed. We show that naively applying the incre-
mental algorithm may result in a non-trivial number of events moving from closed to
pending, thereby defeating the cost-savings measures. Consider the RTN described in
Figure 7. The longest chain of events for which the incremental aigorithm can be used-
to calculate F BC and reuse the previous flow is of length 2,/n (either the diagonal or
two edges). Each of these induces a total complexity of O(Maz Flow(n, m)) because,
eventually, all events and arcs in the RTN will be considered in some fiow probiem.
There are O(+/n) such chains; once one chain is done, all the information about the
previous flow must be reset, because at least one event that was previously closed be-
comes pending or open. The total complexity is therefore O(y/nMazFlow(n,m)).
At worst, no ordering of the events can be found to eliminate this; at best non-trivial
analysis of the precedence graph is necessary to find such an ordering.

A solution to this problem involves using the topological structure of the precedence
graph to order the calls to Bound(X) and to cache the information from each flow
problem that is solved. As long as X;_; € C(X;) no event in C(X ¢ — 1) ever enters
P(X,} and no event in P(X;_1) ever enters O(Xj): this ensures that the incremental
approach of [7] can be used. On the other hand, whenever X; does not strictly follow
X,_1. we have cached the necessary data from the flow problem for some event ¥
that strictly preceded X, again ensuring that the incremental approach of {7] can be
used. The node order requires beginning with a node with no predecessors. Implicitly
the node order traverses the precedence graph using a topological sort. It’s trivial to

12

initialize the set of events with no precedences, and also trivial to mark each visited

node to ensure a topological order is obeyed.

For the analysis of the algorithm, we simply fix an arbitrary topological order and
concentrate on describing the storage of the flow information and the effective size of
the largest flow problem that could be solved. We call the resulting algorithm F BC —
DFS, and it is described in Figure 8 below.

FBC-DFS(R, X;)
Make the STN S arc-consistent.
Infer all anti-precedence and precedence links. (transitive closure)
Collect all sets P(X), C(X).
Collect set YV of events with no predecessors
Froz = Frin =]
for each event X;
if =(X;-1 € C(Xy))
Find the latest V previously visited such that
Pop Frnez and Frrin to Y
end if
Build fiow problems for upper and lower bounds from P(X), top(Fmaz) and top(Fmsn)

Bound(X;)
Push the flow solutions and events they correspond to onto Fingr and Finin

end for
end

Fig. 8. A sketch of the Flow Balance Constraint implemented by using a Depth-First search
through the precedence graph.

Theorem 8. Ler R be an RIN with m induced anti-precedence constraints in its STN
S. Algorithm FBC — DF S takes O(Maz Flow(n, m)) time and O(nm) space.

Proof. Ensuring events are searched in topological order imposes no significant over-
head, nor does finding the correct event to back up to. If X; strictly precedes X in the
order that Bound(X;) is invoked, then the incremental complexity argument of [7] ap-
plies. Essentially, we must (eventually) construct the flow problem for the entire STN.

At worst, each time we call Bound(X;) we must store the resulting flow network.
Becaunse we are searching the graph depth-first, at worst we do so O(n) times. If not,
we must pop the stacks £, and Fonipn each time we “back up”. At worst we back up
O(n) times and store data on each of m flow edges. Only a constant amount of data is
required for each edge. This cost is O(mn), which is dominated by the complexity of
the flow (for FIFO preflow-push, anyway, because v/m < n). O

Note that weaker conditions on the events may lead to improved computational
performance, but the conditions we have imposed are sufficient to produce an algorithm
with the desired run-time complexity.

8 Higher Order Balance Constraint

The quantities LS, (X), L0, (X), LS., (X) and Ly, (X) can be thought of as first
order checks on resource availability, in that they calculate resource bounds before and
after one event. In this section we generalize these techniques in order to calculate
higher-order resource availability checks after k events. To see why this is valuable,
consider Figure 9. We see that no first order bound calculated by FBC proves that
this RTN is impossible to solve. However, notice that we can show that the maximum
available resource after both 4 and B have occured is —1. This corresponds to one
of two schedules: it is possible to either schedule D < B or C < A, but not both

stimultaneously. Thus, without further scarch, we can prove that the NTC is violated.

2 Fem—=-dmax X 1T = 2
. >
VAN ER | leTon —
<[1,10],-2> <2,11]+1> Lmax>(A,B),
W 0 !::"L""z(-C-By-:ﬂ 0
1,1 ¢ :
A0 1.1 / 01 2 Mmax 9 10 M
<1,10],-2> <[2,11],+1> [P [S— 1
—L oy (AMB) —=
) -2

(2) Resource Temporal Network (1) 1st and 2d order Flow Balance Constraint
upper bounds. The second order bound

> L
Lmax (A"B) proves the NTC is violated.

Fig.9. An RTN for which F BC fails to disprove .

This example shows that it may be valuable to perform 2%-order checks on resource
availability by determining resource availability immediately before and after sets of 2
events. In order to do this for L, (X AY) we must account for ihe following possi-
bilities: neither X nor Y have occurred, X has occurred but Y has not, and vice versa.
First, we solve the flow problem over the events of P(X) N P(Y) to find the maximum
availability strictly before both X and Y. We call this set of events P, . (—(X AY)).
The second requires adding the constraint X < Y and then solving the flow prob-
lem defined by P(Y) and find the maximum availability strictly before Y. Call this set
P5..(X < Y). The last requires adding the constraint Y < X and then solving the
flow problem defined by P(X) and find the maximum availability strictly before X .

Call this set of events £, (Y < X). Wedetine L35, (X AY)as

ma(Y eV,

VEPS L (m(XAY))

Yoo dvy,

VEPR(X<Y)

> (V)

VEPRa(X<Y)

&)

For L2, .. (X AY') do the following. First, we solve the flow problem over the events
of P(X) U P(Y'). Call the resulting set P, ((X = Y)). Now we must also include
events in F(X) U E(Y), but some of these may already be in P(X) U P(Y'), so these
events must be discarded. Define R(X VY) = (BE(X)YU E(Y) n(P(X)U P) u
P ((X = Y)). We thus define L7, (X VY)) = 3 yepxyyy cV). This is the
amount after the schedule assuming both X and Y have occurred. The lower bounds
are calculated in a similar manner.

To see how this works in Figure 9, note P(A) " P(B) = 0. The maximum available
under these circumstances is achieved by postponing all the events, which is 2. If we
impose 4 < B, P(B) = D; the best schedule here is A4, D for an availability of 1.
The same applies if B < A. Thus, L5, (X AY) = 1. To calculate L7, (4 A B)
we observe that the first incremental calculation leads to 2 — 4 = —2 since neither
A nor B are assumed to have occured. If we impose A < B, the max involves A;

14

but we must assume B has happened as well to achieve the maximum, which leads to
1 — 2 = —1. The same applies for impose B < A. The result leads to the schedule
defined by ensuring all of the events are before or equal to A and B. We can define the
interval over which the bounds hold as we have previously.

The total complexity of the resulting naive algorithm for calculating Second order
Flow Balance Constraint (FBC?) is 2((n?)MazFlow(n,m)). The n? term comes
from the fact that n(n — 1) pairs of bounds must be calculated; the complexity bounds
obscure the fact that 3 flow problems must be solved per bound.

Note, however, that n? is a very crude estimate of the total number of bounds to
compute. If A strictly precedes B then P, (A A B) = Py, (B). Thus, the induced
precedences vastly reduce the number of bounds to calculate. Additionally, the sizes of
the flow problems will generally be larger as the number of events involved climbs. This
is because P(X AY) = P(X) U P(Y'). These factors make a more precise complexity
analysis difficult. Finally, it is likely that the incremental flow algorithm described in
[7] can be used to further reduce the complexity. It is sufficient for our purposes to
demonstrate that even tighter inferred constraints can be calculated in time polynomial
in the number of events considered.

We can further generalize this to sets of k events in the same manner. The complex-

ity of the naive algorithm for calculating FBC* is 2 ((Z) (Qk) MazFlow(n, m)) .

. n . .
This is because there are k bounds to calculate, and each bound requires solving 2%

flow problems (as well as arc-consistency enforcement steps).

9 Conclusions and Future Work

In this paper we have shown, contrary to expectations, that BC and £, are not strictly
comparable in terms of their power to halt search over partial ordered schedules for
RTNs. We have also shown how to exploit the features of BC and E; to construct
FBC, atighter bound on the availability of resources for RT'Ns than either of the previ-
ous approaches. The resulting bound can be computed by the algorithm FBC — DFS
in O(MazFlow(n,m) time, but n * O(MazxFlow(n, m) space. When used in iden-
tical search algorithms with identical static variable and value orders, £'BC will gen-
erate search trees with less than or equal nodes than either BC or E:. The technique
generalize for calculating FBC leads to even tighter bounds, but at sharply increased
computational cost.

While we have proven theoretical dominance of F'BC, an empirical study will be
necessary to determine whether it is worth the overhead. An empirical study will also
have the added benefit of shedding more light on the relative value of £y and BC for
speeding up the solution of scheduling problems. There are numerous possibilities for
speeding up the solution of the flow problems necessary to calculate the bounds. Fur-
thermore, despite their apparent complexity, higher order variants of FBC may also
prove worthwhile. The DFS-FBC algorithm could benefit from judicious node order-
ings. One possible reason to order the flow problems is to reduce total flow problem
solving costs, another (possibly conflicting) goal is to reduce storage costs. Similarly,
the higher-level consistency algorithms can be crafted to maximally exploit the incre-
mental envelopes approach as well as judicious ordering of the sets of k events that
must be contemplated to enforce the bounds.

Changes to dominance criteria that we use are worth contemplating. On the one
hand, requiring that A dominates B on R if U4(R)) C Ug(R)) is rather strong, and
could be weakened, say, to [U4(R))| < |Us(R))|. On the other hand, requiring that A
dominates B if 3R such that A dominates B on R and there exists no S such that B
dominates 4 on S is somewhat weak, and perhaps could be strengthened.

A second, equally important empirical study will be necessary to shed light on how
to integrate heuristics that makc usc of the various bounds. Laborie [6] has built numer-

ucic

ous such heuristics for BC, providing a good starting point. However, such heuristics
likely have complex interactions with the pruning power of the envelopes. It will likely
be necessary to trade off between the pruning power and heuristic predictiveness of the
resource bounds to craft the best scheduling algorithm.

For simplicity, we concentrated here on analyzing the complexity of F BC using
Preflow-Push with FIFO queues. Generalizing the complexity analysis to other flow
algorithms may be worthwhile, but is complicated by several factors. The pushable flow
cannot be easily analyzed, but it is tempting to try assessing the relationship between
the number and size of the flow problems to be solved during calculation of FBC by
looking at the precedence and anti-precedence graphs. Appealing to graph theory may
lead to both improved complexity analysis and, possibly, better algorithms as well.

References

1. Muscettola, N.: Computing the envelope for stepwise-constant resource allocations. In:
Proceedings of the 8** International Conference on the Principles and Practices of Constraint
Programming. (2002) 139 -154

. Laborie, P.: Resource temporal networks: Definition and complexity. In: Proceedings of the
18" International Joint Conference on Artificial Intelligence. (2003) 948 - 953

3. Dechter, R., Meiri, L. Pearl, 1.: Temporal constraint networks. Artificial Intelligence 49
(1991) 61-94
4. Jénsson, A., Morris, P.. Muscettola, N., Rajan, K., Smith, B.: Planning in interplanetary
space: Theory and practice. In: Proceedings of the Fifth International Conference on Artifi-
cial Intelligence Planning and Scheduling. (2000)
5. Morris, P., Muscettola, N., Tsamardinos, I.: Reformulating temporal plans for efficient exe-
cution. In: Proceedings of the 15% National Conference on Artificial Intelligence. (1998)
6. Laborie, P.: Algorithms for propagating resource constraints in ai planning and scheduling:
Existing approaches and new results. Artificial Intelligence 143 (2003) 151-188
7. Muscettola, N.: Incremental maximum flows for fast envelope computation. In: Proceedings
of the 14*" Intemational Conference on Autornated Planning and Scheduling. (2004)
8. Chapman, D.: Planning for conjunctive goals. Artificial Intelligence 32 (1987) 333 - 377
9. Kumar, TK.S.: Incremental computation of resource-envelopes in producer-consumer mod-
els. In: Proceedings of the 9** International Conference on the Principles and Practices of
Constraint Programming (2003) 664 — 678
10. Ahuja, R., Magnanti, T., Orlin, J.: Network Flows. Prentice Hall (1993)

28]

